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Synchronization of chaotic resonators based on control theory
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We have investigated experimentally and computationally a synchronization scheme, based on
control theory, for the case of two nearly identical chaotic diode resonators. From the experimentally
captured time series we calculate the required feedback factors and explain why this factor can also
be approximated as a constant for the duration of its application. Both the calculated and constant
feedback factors are implemented experimentally in order to synchronize two resonators. In addition,
we observe that the application of the perturbing factor was only necessary when the resonator was

in the unstable region of the attractor.

PACS number(s): 05.45.+b, 84.30.Wp

I. INTRODUCTION

The publication of two seminal papers in 1990 altered
the focus of research in chaotic dynamical systems. In-
stead of studying the possible implications of the sensi-
tive dependence to initial conditions, theoretical and ex-
perimental studies are now exploiting that very property
in order to control [1] or synchronize [2] the output of
chaotic systems. The growing interest in synchronizing
chaotic signals is driven by the potentiality for applica-
tions to secure communications [3], designing arrays of
coupled chaotic lasers [4], developing cardiac pacemak-
ers, and other biomedical applications [5]. Currently two
major approaches to chaotic synchronization have been
studied in the literature. The method of Pecora and Car-
roll [2] involves isolating from a chaotic system a subsys-
tem which contains only negative Lyapunov exponents.
A pair of identical subsystems can then be synchronized
by a chaotic driving component of the full system. An-
other approach, loosely referred to as synchronization by
continuous feedback [6], involves the continuous feedback
of a component signal difference multiplied by a propor-
tionality factor to either a slave system (unidirectional
synchronization) or to both a master and slave system
(mutual synchronization). In this method the value of
the proportionality factor is not known from experimen-
tal data a priori and must be determined empirically.

In this paper we explore a third approach to chaotic
synchronization developed by Lai and Grebogi [8]. This
method is a direct extension of the techniques used suc-
cessfully by Ott, Grebogi, and Yorke (OGY) [1] to control
unstable periodic orbits. For a comprehensive review of
various aspects and applications of the OGY method, the
reader should consult Refs. [7]. The synchronization pro-
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cedure of Lai and Grebogi requires making minute con-
trolling perturbations to a control parameter of a slave
chaotic system in order to steer its orbit onto a mas-
ter chaotic orbit. Motivated by their work, the authors
recently demonstrated synchronization using a propor-
tional feedback scheme applied to a pair of chaotic diode
resonator circuits [9]. Synchronization was achieved by
modulating the amplitude of the drive wave of one of the
resonators with a controlling feedback signal. This signal
was proportional to the voltage difference between the
two resonators and was applied for a fraction of the driv-
ing cycle. Their method is the synchronization analog of
the occasional proportional feedback scheme developed
by Hunt [12] for controlling unstable periodic orbits.

The focus of this paper is to apply the control theory
method of synchronization to the case of nearly iden-
tical chaotic diode resonators. We numerically demon-
strate, through the calculation of Lyapunov multipliers,
that while the theoretically prescribed feedback mini-
mizes the conditional global Lyapunov multiplier, sim-
plifications of the formula will also induce synchroniza-
tion. Experimentally, we implement the control theory
synchronization procedure in a pair of diode resonators
circuits. We also show experimentally that synchroniza-
tion can be achieved when the control feedback is applied
only when the resonator trajectory is traversing an un-
stable region of the attractor.

This paper is organized as follows. The Lai and Gre-
bogi synchronization scheme is reviewed in Sec. II. In
Sec. III we introduce the dynamical system describing
the chaotic diode resonator. In Sec. IV we numerically
investigate how the conditional local Lyapunov multipli-
ers change when two diode resonators are synchronized
using control theory. In Sec. V we demonstrate how the
required synchronizing factors can be extracted from the
experimentally obtained return map. Two experiments
are described in Sec. VI. The first is an implementation
of the Lai and Grebogi scheme using the prescribed feed-
back to obtain synchronization. The second shows that
synchronization can be achieved when feedback is applied
only if the system is in an unstable region of the attrac-
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tor. The main points are summarized and conclusions
are drawn in Sec. VII. Finally the dynamical equations
describing the diode resonator circuit are derived in the
Appendix.

II. SYNCHRONIZATION USING CONTROL

The OGY method for controlling unstable periodic or-
bits requires perturbing a control parameter of a chaotic
system in order to stabilize one of the unstable periodic
orbits. Perturbations are periodically computed based on
the difference between the point of crossing of the chaotic
orbit through a Poincaré section and a fixed point in
this section. The Lai and Grebogi technique of synchro-
nization using control also calls for periodically making a
minute perturbation to an existing control parameter of
a chaotic system. However in this case, the required per-
turbation is based on the difference between a slave orbit
and a freely operating chaotic master system when they
cross a Poincaré section. Figure 1 graphically depicts
the effect of the perturbation on the slave orbit.

The synchronization formula is derived by consider-
ing two k-dimensional mappings #,+1 = F(&,,po) and
Yn+1 = F(Yn,p), where the former (master) depends on
a fixed parameter po while the latter (slave) depends on
a control parameter p to which synchronizing perturba-
tions are applied. To generate the stabilizing feedback,
we first identify the stable and unstable manifolds [for
our case consider only one stable and one unstable direc-
tion, f,(n) and fu(n)] of the chaotic dynamical system.
In general, these eigenvectors will rotate in some man-
ner governed by the underlying dynamics of the system
as the orbit wanders along the attractor. This requires
some knowledge of the mapping so that a small sphere

yn+2
Py

yn+l ¢

/;XQ
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FIG. 1. (a) While the unperturbed slave orbit, ¥, may ap-
proach the master orbit, @, eventually it will move off along
the unstable direction, f.(.). (b) By applying the appropri-
ate perturbations to the y slave system, we direct its orbit so
that it has no component along the unstable direction, f., of
the @ master orbit. The y orbit then approaches the = orbit
along the stable direction f..
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of points can be propagated forward in time in order to
estimate this unstable direction [8,10]. If we expand the
slave orbit locally about the master and apply the re-
quirement that [yn41 — @ny1] - Fum+r) = 0, then the
perturbation necessary to synchronize y, to @, is given

by [8]

— [D.'IF(yap) ° {yn - m"(po)} N fu(n+1)]
_DPF(yap) . .fu(n+1) ’

Yy=x,p=pPo

0pn

(2.1)

where the derivative terms are evaluated at y,, = @,,,p =
po. In principle the perturbation is to be applied when-
ever it is a small fraction of the unperturbed parameter.
Hence, one should not apply the feedback if the separa-
tion between the two orbits is large or the denominator
of Eq. (2.1) is small. The parameter p is changed to
Prn = Ppo + 0p, upon the nth crossing of the surface of
section. For a continuous flow the parameter should be
held constant at p, until the next, (n + 1)th crossing of
the surface of section, at which time it is changed again.

The physical interpretation of this formula is straight-
forward. The proximity of the slave orbit to the master is
amplified by a factor which is directly proportional to the
rate of growth or contraction of the master-slave separa-
tion in the unstable direction, and inversely proportional
to the sensitivity of the map to a variation in the control
parameter. Naturally, the greater the rate of divergence
of the orbits the larger the perturbation factor must be.
Also, a map with a sensitive dependence to the control
parameter requires a relatively small perturbation.

The above method of Lai and Grebogi achieves syn-
chronization by setting the local rate of divergence of
the master-slave orbit in the unstable direction to zero
at each iteration of the map. Note that for systems with
more than one positive Lyapunov exponent, this criterion
alone does not, in general, guarantee synchronization.
As pointed out by So and Ott [11], for high dimensional
systems the product of the eigenvalues of the Jacobian
matrices is not necessarily equal to the eigenvalue of the
product of the Jacobian matrices. In such systems the
scalar feedback defined in Eq. (2.1) is not likely to be
successful.

III. THE DRIVEN CHAOTIC RLC CIRCUIT

The system under study is a driven nonlinear RLC
circuit composed of a 1N4004 silicon rectifier diode, a 33
mH inductor (dc resistance 243 ), and a 90.5 Q resis-
tor in series. It is sinusoidally driven at a frequency of
70 kHz. The nonlinearity of the system arises from the
nonlinear conduction and capacitance properties of the
diode.

In the past the diode resonator was used as a paradigm
to observe various chaotic phenomena. It has displayed
the period doubling route into chaos [13], tangent bifur-
cations [14], an intermittent route to chaos [15], and cri-
sis [16,17]. Other studies of the circuit revealed forward
and reverse bifurcations with respect to the drive voltage
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[18,19], drive frequency [20], wave bias [21], and diode
temperature [22].

The equations of motion for the circuit are derived
from Kirchoff’s laws [23,24]. In terms of the dimension-
less current, Z, and voltage drop across the diode, V,
these are

dT ) s
= Vosin(1) +V — 3
dy
— =G(Z 3.1
? —a@y) (3.1)
where
IT—y(e*¥V—1) £y < L
eV e (1-V) =] wy<s
G(Z,V) = Ty (e®V 1) £V > L (3.2)
— 2'

c1[e*V+ez (bztlm\’)]

For our particular system, the constants are 8 = 43.5,
a = 7.69, y = 0.257, b; = 0.384, b, = 0.31, c; = 4.26,
cy = 0.078, and m = 0.38. A derivation of these equa-
tions is given in the Appendix.

Figures 2(a) and 2(b) are plots of bifurcation diagrams
of the current versus the drive wave amplitude. Both
Figs. 2(a) (numerically calculated) and 2(b) (experimen-
tally measured) clearly show period doubling cascades
into chaos. The model is in excellent qualitative agree-
ment with that measured experimentally and in good
quantitative agreement [25]. In this work, we report re-
sults obtained from the chaotic region below the period-3
window.

The two nonzero Lyapunov exponents, obtained from

Peaks of the voltage across the resistor

Drive voltage (V)

FIG. 2. Bifurcation diagrams of the current through the
circuit as a function of the drive voltage calculated (a) nu-
merically from Eq. (3.1) and Eq. (3.2) and (b) from experi-
mental data. Observe that we obtain very good qualitative
agreement between theory and experiment.

the model, are shown in Fig. 3(a) for a range of drive
voltages. They show the ascent into chaos along with
various windows of stability. A zero value delineates the
chaotic regime from the periodic and quasiperiodic re-
gions. Figure 3(b) displays the Kaplan-Yorke conjecture
[26] for the fractal dimension of the attractor.

In order to apply the synchronization scheme of Lai
and Grebogi we need to determine the unstable con-
travariant eigenvector, f,(»), at each crossing of the orbit
trajectory through a Poincaré section of the attractor.
We define this Poincaré section as the peaks of the res-
onator current (Z = 0, Z < 0). Since the dynamical
variables of our diode resonator are the circuit current 7
and the diode voltage drop V, f, will have components
Fun) = (fz(n), fv(n)) at the nth crossing. Defining the
difference between the slave signal y, and the master
signal @, as €, = Yy, — ©,, Eq. (2.1) can be written as

opn =y - €y (3.3)
__ JuzZ(n+1) J11(n) + fuv(n+1) J21(n) e ‘
JuT(n+1) VI(n) + fuvnt1) Win) ™)
fu n J n + qu n J. n
_ fuz(nt1) J12(m) ) T2 (3

fuz(m+1) VI(n) + Fuv(n+1) Win)

In the above formula we have written the components of
the 2x2 Jacobian matrix Dy F' as Jj;(») and the compo-
nents of the shift vector D, F' as (Vz(n), Vy(n)) at the nth
iteration. In general a is a vector quantity. However, for
our choice of the Poincaré section, the diode voltage drop
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FIG. 3. (a) The Lyapunov exponents A; and Az (A2 = 0)
are numerically calculated as a function of the wave ampli-
tude, Vo. (b) The Kaplan-Yorke conjecture for the attractor
dimension.
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staturates to a level of approximately 0.7 V. Thus upon
each iteration, the error €y(,) in the master-slave diode
voltages is negligible, and the second line of Eq. (3.4)
does not contribute to dp,,.

To determine the remaining contributions to ép, in
Eq. (3.4) we need to calculate the unstable direction
fu(n) and the components of the Jacobian Jij(n) =
0I,41/01, and J31(n) = OVnpy41/0I,. The latter can
be performed numerically by perturbing the diode res-
onator values at a given peak n from (Z,,V,) — (Z, =
I, +6,V, = V,) and at the next peak estimating the
derivative to be approximately Jyi(n) = (Z,, 11 — In)/6.
Similarly by perturbing the peaks via (Z,,V,) — (Z, =
In,V;, = Vn + 6) we have Jyy(n) ® (V11 — Vn)/d. The
shifts DpF = (Vz(n), V(n)) can likewise be determined
by starting with the initial conditions (Z,,V,) at the
nth peak and perturbing the control parameter (V) from
Po = po + 6 and estimating the derivatives similarly.

To determine the unstable directions numerically we
can proceed in a manner similar to that defined in [8,10].
By propagating a unit vector e from peak n — 1 to peak
n via the linearization of the diode resonator equations,
we obtain an estimate of the direction e, of the unstable
manifold at the nth peak. Similarly, by propagating a
unit vector backwards in time from peak n + 1 to peak n
via the time reversed version of the linearized diode res-
onator equations, we obtain an estimate for the direction
e, of the stable manifold at the nth peak. We can then
solve for the contravariant versions of these vectors f.,
and f, from the conditions f, -e, =1, f;-e, = 1 and
fu-€e,=0,f;-€e,=0.

Upon performing this analysis we find

Fuv(n+1) Win)
fuz(n+1) VI(n)

Juv(nt1) J21(n)

<1 and
fuz(nt1) J11(n)

<1,

across the whole attractor, so that components along the
diode voltage contribute much less significantly to dp,
than the components along the circuit current. This al-
lows us to approximate the perturbation formula as

bpn = — T

— _M €Z(n)- (3.5)
0Z,+1/0pn

It is significant to note that all references to the con-
travariant vector f have canceled in the above pertur-
bation formula. Equation (3.5) is the appropriate Lai-
Grebogi formula for a one-dimensional map of the form
Zpn+1 = F(Z,,p). This is consistent with our estimated
value of 1.16 for the Kaplan-Yorke dimension of diode
resonator attractor on the surface of section. The nearly
one-dimensional nature of the attractor is evident from
the thinness of the first return map as shown in Fig. 4.
Experimentally, Eq. (3.5) translates into a much simpler
formula to implement as opposed to the full vector form
of the perturbation, Eq. (2.1) involving the direction of
the unstable manifold at each peak.
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FIG. 4. The first return map of the resonator exhibits a
thin structure indicative of one-dimensional mappings. The
vertical dotted line divides the map into an unstable region
characterized by a slope greater than 1 and a stable one.

IV. CHARACTERIZING SYNCHRONIZATION
BY CONDITIONAL LYAPUNOV MULTIPLIERS

In this section, we utilize conditional local and global
Lyapunov multipliers in order to characterize the fea-
sibility of control theory synchronization for the diode
resonator. Global Lyapunov multipliers quantify the av-
erage rate of divergence of neighboring orbits over the
entire phase space of the attractor. Local Lyapunov mul-
tipliers, on the other hand, characterize the local rate of
divergence of neighboring orbits of the attractor along
small sections of the orbit. They are dependent on the
location of the evaluated point and provide detailed in-
formation about the regional stability of the attractor
[27,28].

Conditional Lyapunov multipliers have been intro-
duced by Pecora and Carroll [2] and Rul’kov (first refer-
ence in [6]). Let us consider the evolution of the difference
between two chaotic systems. In a 2k-dimensional phase
space defined by the @ and y systems, a synchronization
manifold exists for which «,, = y,,. The conditional Lya-
punov multipliers characterize the evolution of an error
signal defined by €, = y, — @, in a direction perpendic-
ular to this manifold. A linearization of the mapping for
this difference yields

€nt1 = DF(mn) *€n , (4'1)
where D F is the Jacobian matrix calculated from the dif-
ference between the master and slave mapping functions.
The direction of the displacement is given by €,/|€,|
while the magnitude is given by

_ |€n+ll
my = |€n| .

(4.2)

This is referred to as the conditional local Lyapunov
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multiplier (CLLM). It expresses the amount of growth
(|mn| > 1) or contraction (Jm,| < 1) of the error signal
perpendicular to the synchronization manifold at a given
point «,,. Note that in general, the value obtained for
m., is dependent on the direction chosen for the displace-
ment and that for each dimension of the dynamical sys-
tem there will be a corresponding conditional Lyapunov
multiplier. However in the case of the diode resonator,
we are interested only in the largest Lyapunov exponent
which corresponds to the single unstable direction.

By calculating the evolution of the error signal at
each iterate throughout the synchronization manifold,
the conditional global Lyapunov multiplier is given by

N N1+1
g9 N—oo ne0 IEnl

This procedure calculates only the largest multiplier.

Explicitly, the evolution of the error, €,, is measured
by evaluating the propagation of a point along the mas-
ter trajectory and a nearby point along the slave orbit.
The slave orbit is perturbed by the effect of some feed-
back; otherwise, this calculation would simply be an esti-
mate of the usual Lyapunov multiplier. Synchronization
occurs when the corresponding conditional global Lya-
punov multipliers are all less than 1.

The significance of the algorithm proposed by Lai and
Grebogi for maps is that it provides a technique to calcu-
late and apply perturbations which set the CLLM’s along
the unstable directions to zero at every iteration. Since
the conditional global Lyapunov multiplier will be mini-
mized as well, this technique guarantees synchronization
in systems with only one unstable direction. However,
the requirement for convergence is only that the condi-
tional global Lyapunov multipliers have a magnitude less
than unity. Therefore it is possible to adapt the Lai and
Grebogi perturbation formula to obtain a simpler means
for determining feedback. In Ref. [9], this meant ampli-
fying y, —@,, with a constant factor instead of the iterate
dependent factors called for in Eq. (2.1).

A numerical calculation of the resonator CLLM’s on
the Poincaré section is performed by observing the evo-
lution of the error signal between successive piercings.
The ratio between the final trajectory difference and the
initial one was considered to be the CLLM for the initial
piercing. Global Lyapunov multipliers are then obtained
by the geometrical averaging method described above.
Figure 5 shows the CLLM’s versus the peak values of the
current. In the event of no applied feedback to the slave
orbit, the CLLM’s are identical to the local Lyapunov
multipliers of the single resonator. This case is shown in
Fig. 5(a). The CLLM’s are predominantly greater than
1, and as expected synchronization is not achieved. Note
that even without applied feedback, CLLM’s along the
higher peaks are less than 1. Though globally unstable,
this shows that the attractor has regions of natural sta-
bility.

We next look at amplitude modulating the drive wave
of the slave system by the term o [Z5(¢,)—Z™ (t,)] where
a is a constant amplification factor and Z¥ and ZM refer
to the currents in the slave and free operating master

(4.3)
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FIG. 5. A numerical calculation of the conditional local
Lyapunov multipliers from Eq. (3.1) and Eq. (3.2). (a) The
master and slave resonator are operating independently. (b)
The feedback amplification factor is taken to be a constant
a = 34 (a is dimensionless). Though some local multipliers
remain greater than unity, the global Lyapunov multiplier is
less than unity and synchronization occurs. (c) An optimum
constant feedback factor of 57. The perturbation substan-
tially reduces the multipliers in the unstable region of the at-
tractor but does little to influence those in the stable regions.
(d) Application of the Lai and Grebogi prescribed feedback
factor a, from Eq. (3.5). This synchronization procedure is
the most efficient at minimizing the local Lyapunov multipli-
ers.

resonator at the time of occurrence of the nth peak value,
t,. The first equation of Eq. (3.1) is then modified to

dT . T
= {Vo + a[I5%(tn) — IM (t,)]}sin(7) + V — 3

(4.4)

The implementation of Eq. (4.4) was the experiment car-
ried out by the authors and presented in [9]. Figure 5(b)
shows the CLLM’s when a (a = 34) is just sufficient to
reduce the multipliers so that synchronization is realized.
Even though some of the CLLM’s are greater than 1,
the global geometric average remains below unity. The
CLLM’s plotted in Fig. 5(c) are at their least possible
values when a constant factor is utilized. In this case
a = 57.

The iterative dependent term prescribed by the Lai
and Grebogi algorithm, Eq. (2.1), presents the optimum
choice for the minimization of the conditional multipli-
ers. These are shown in Fig. 5(d). Note that though
the CLLM’s are largely reduced for the lower values of
VM they are only slightly affected in the naturally stable
regime of the attractor.

Figure 6(a) is a graph of the largest conditional global
Lyapunov exponent (In[mg]) versus the a. This shows
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FIG. 6. (a) The largest conditional global Lyapunov ex-
ponent versus a shows a band of values for which synchro-
nization can be achieved. (b) The standard deviation, 6, of
I8 — IM as the constant feedback synchronizing factor is in-
creased. The plot is in excellent agreement with experimental
observations.

the band of constants for which synchronization can be
achieved. Figure 6(b) is a plot of the standard deviation
of T5 — IM. The corresponding synchronization of the
master and slave is striking as the standard deviation
drops to zero in the band. These plots are a numerical
illustration of what the authors observed experimentally
and reported in Ref. [9].

V. SYNCHRONIZING THE DIODE RESONATOR

In this section we describe the implementation of the
Lai and Grebogi synchronization algorithm to the case of
two chaotic diode resonators. From the two chaotic dy-
namical variables, current (Z) and voltage drop across the
diode (), we select the current through the resonator as
the observable signal. We evaluate the feedback at the
peaks of the current. Therefore we rename the itera-
tive dependent factor as a peak dependent factor so that
ép. = 6p(t,) where t, refers to the time of occurrence
of the nth current peak. §p,, modulates the amplitude of
the drive wave, the chosen control system parameter, for
some fraction of the known period so that the drive wave
has the form (Vo + dp,,) sin(7).

The formula for ép,, is given by Eq. (3.5). As discussed
in Sec. III, the voltage drop across the diodes in the mas-
ter and slave circuit are nearly identical for the surface
of section defined by the current peaks of the master.
Physically, this current is measured as the voltage drop
across the resistor element, V¥ (t), of the resonator. Us-
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ing ZM — VM and I5 — V,5 we write Eq. (3.5) as

ovVM, jovM
Opn = — [Vs(tn) - VM(tn)]
8V,f‘j'_1/8p
= a, [V;S - VM), (5.1)
where we have defined

vM jogvM

o = —6%/——"— (5.2)
aV"rH—l/ap

evaluated at the VM = VM(¢,).

Thus we need to calculate and apply in real time the
ratio of the slope of the map to the shift. Evaluating these
terms experimentally can be accomplished by using the
first return maps. Figure 7(a) displays two return maps
taken at a drive amplitude of 4.6 and 5.1 V, respectively.
Since each return map is composed of approximately 300
points and is contaminated by noise, a curve fit is in-
terpolated to average the fluctuations in nearby points.
Both return maps are divided into four sections creat-
ing a piecewise continuous curve to which a low order
polynomial curve fit is computed for each section.

Vst (mv)

(b)

-400 |- ~

-600 - -

1 1 1
30 40 50 60 70

Vi (mV)

FIG. 7. (a) Two return maps recorded at 4.6 and 5.1 V
(upper) superimposed show the effect of a perturbation to the
drive wave amplitude. The shift of the map is obtained by
measuring the change in peak [VnM(S.l V) -VM@4.6 V)] /0.5
V. The one-dimensional Jacobian matrix as a function of the
peaks is obtained from the slope of the 4.6 V map. (b) The
peak dependent feedback amplification factor as a function of
the resistor peaks. Below 48 mV the factor is approximately
constant regardless of the two lower branches of the return
map. Along the upper branch, the factor drops off rapidly
due to the shifting of the return maps.
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The shift of the map, 8V, /8p, is obtained by con-
sidering how the return map reacts to a perturbation ap-
plied to the amplitude of the drive voltage. For a driving
voltage Vy, we look at how the point V,%(V;), is mapped
into V,3, ;. Then at a slightly higher voltage, Vo + AV,
we look at how the same point, V,5(V;), is mapped into
the new point V,5, (Vo + AV). The shifting is seen in
Fig. 7(a). The 5.1 V return map has shifted along the
upper branch of the 4.6 V map. The experimental ap-
proximation for the shift is then

VS (Vo +AV) - V5 (W
vt o LAV £ AY) V2 (0]

(5.3)

The iterate dependent amplification factor is the nega-
tive of the quotient of the two terms above. Figure 7(b)
shows the result of the calculation versus the peaks of
VM(t). While both branches of the lower folded region
produce a relatively constant factor, in the upper region
the factor drops off rapidly. The return map of the diode
resonator shifts along an axis almost parallel to the upper
branch and the shift, 8Vn1‘1’{1 /Op, approaches zero. Hence
the feedback factor becomes quite large. In this region
it is not possible to apply the exact feedback perturba-
tion since the large amplification of the unavoidable noise
along with any differences in V5(t) and VM(t) would
overmodulate the drive wave. A numerical calculation of
the feedback factor, shown in Fig. 8, displays a similar
shape, but does not drop off as drastically.

The problems caused by an infinitesimal shift of the
return map are not particular to this dynamical system.
For a generic one dimensional return map it is quite pos-
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FIG. 8. A numerical calculation of the peak dependent
feedback amplification factor is similar to Fig. 7(b). As seen
experimentally, the lower section is essentially constant at a
value of approximately 57.
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sible that the shifted return map may intersect the un-
perturbed return map. At the point of intersection, the
value of the shift is zero, producing an infinite value for
a,. When such pathologies occur, one either chooses to
not apply feedback or approximate the feedback from the
nearby regions.

By inspecting the first return map (Fig. 4), one notes
that the slope of the lower branches is greater than unity
while the slope of the upper section is less than 1. Be-
cause of the resonator’s one-dimensional nature, it follows
that the lower section is unstable; nearby orbits in this
region diverge. On the other hand, the upper branch is
stable and adjacent orbits here should remain temporar-
ily adjacent until the phase space trajectory wanders into
the unstable regime. We also point out that the slope,
i.e., our approximation for the Jacobian, is equivalent to
the CLLM’s shown in Fig. 5(a) for the case of no feed-
back. The salient feature to capitalize upon is that a feed-
back perturbation need only be applied when the system
is in an unstable region of the attractor. In the stable re-
gions feedback perturbations should become unnecessary.
For the diode resonator, this means that feedback could
be applied only when the resistor voltage peaks are less
than 48 mV. In these critical regions, the amplification
factor is constant [see Fig. 7(b) and Fig. 8].

VI. SYNCHRONIZATION EXPERIMENTS

A. Setup

In this section, we describe the results of two exper-
iments performed that test control theory synchroniza-
tion. A block diagram of the experimental arrangement
is shown in Fig. 9. The difference in the two voltage sig-
nals, V5(t,) — VM(t,), is multiplied by o, [Figs. 9(b)
or 9(c) described below] and the product is input into a
sample and hold amplifier. At VM (t,), the feedback is
held by the sample and hold device and gated into the
amplitude modulation input of the waveform generator
which drove the slave resonator. The duration of the
feedback can range from 0 ps to within 1 us of the next
cycle — a limitation due to the acquisition time of the
sample and hold device. Experimentally adjustable pa-
rameters are phase, amplitude, and dc bias differences in
the two driving waves, and characteristics of a,.

B. Synchronization by means of an iterate
dependent feedback factor

The goal of this experiment is to synchronize the res-
onators using the prescribed feedback derived from the
control scheme. The calculated feedback curves por-
trayed in Fig. 7(b) and Fig. 8 are reminiscent of the well
known current-voltage curve of rectifier diodes. Hence a
rectifier composed of a diode in series with a resistor is
used to create the desired factor. Figure 9(b) shows the
means of producing this term (solid line). The control of
the feedback (dotted line) is unused in this experiment;
feedback is always applied at each peak. VM (t) is ampli-
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FIG. 9. Schematic diagram of the experiments. (a)

V5(t) — VM(t) is obtained, muliplied by o, then input into
the sample and hold amplifier. On the drive wave peaks, the
input is frozen and amplitude modulates the slave drive wave
generator. (b) By using VM(t) to drive a diode-resistor rec-
tifier element, the inverted voltage drop across the resistor of
the rectifier generates a, (solid line). The feedback control
(dotted line) applies the perturbations for every cycle. (c) If
VM (t) is greater than the threshold voltage of the comparator
the feedback procedure is impeded (dotted line). Otherwise
an is constant and feedback applied.

fied and dc biased, then used to drive the diode-resistor
rectifier. The voltage drop across the rectifier resistor
is then inverted, amplified, and dc biased. By adjust-
ing the various gains, the shape of a, could be varied
from a line of slope zero to the desired peak dependent
feedback factor. Figure 10 shows the experimentally im-
plemented amplification factor a, versus VM (t,). The
composite feedback perturbation is created by multiply-
ing VM(t,) — VS(t,) by an.

In the experiment, feedback amplitude modulates the
slave waveform generator for 12 us of the 14.3 us period.
In contrast to the numerical algorithm of Lai and Gre-
bogi, feedback is applied regardless of the magnitude of
0p,. At time ¢t = 0 the feedback is applied. Figure 11(a)
shows the time series of VM (t) and V7 (t). Figure 11(b)
plots the difference between the two signals. Even while
unsynchronized, perturbations applied to the slave drive
wave are relatively small. After 200 us the two signals
are virtually identical. In the optimum case, the ratio of
the feedback pulse heights to the amplitude of the drive
wave is less than 2%.

When the values of VM(t,) are above 48 mV the de-
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FIG. 10. The experimentally applied a, is seen by record-
ing the output of the rectifier element on the drive wave peaks.
Its form is experimentally adjustable.

gree of synchronization is only slightly affected by the
magnitude of the feedback factor. The slope of this feed-
back factor curve (Fig. 10) can be varied from zero to
a quite large value, yet synchronization persists. This
tolerance is to be expected since, as noted above, the
attractor is stable in this regime. A more critical param-
eter is the overall upwards or downwards shifting of the

Vi), vs (mv)
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time (us)

FIG. 11. (a) A time series of VM (#) (solid line) and V5 (t).
Feedback commences at t = 0. (b) AV (t) = V5(¢) — V™(¢)
plotted in the time domain. Synchronization is achieved in
about 175 us.
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feedback curve. Synchronization occurs only for a small
range of shifting since it is the constant portion of the
factor which critically affects the unstable region of the
attractor.

If feedback is applied longer than 12 us of the 14.285
us period, synchronization could not be maintained. This
observation is in contrast to the hypothesis that feedback
should be applied for the entire duration of the period.
Since the Lai and Grebogi synchronization scheme was
developed for maps, it is natural to assume that in going
to a dynamical system, the feedback signal should be
applied for the entire period. However, this is not what
we observed. As a final note, the minimum amount of
time feedback could be applied before synchronization is
lost, when initially commencing at the voltage peaks, is
8 us.

C. Synchronization by applying feedback only when
necessary

As a test of the natural stability of the attractor, an
experiment was constructed so that feedback is applied
only when the diode is operating in unstable regions of
the attractor, i.e., when VM(t,,) < 48 mV. This region
is seen in Fig. 4. The vertical dotted line delineates the
unstable region on the left from the locally stable re-
gion to the right. Figure 9(c) is a block diagram of the
comparison circuit. The amplification factor (solid line)
is constant. The comparator produces a control signal
(dotted line) enabling or disabling the feedback timing
circuit. Since peaks less than 48 mV occur 64% of the
time, feedback is inhibited for more than a third of the
sampling periods.

With the threshold set to disable the feedback when
VM(t,) is above 48 mV, this scheme successfully syn-
chronized the two resonators. The synchronization ob-
tained is equal to that obtained in the first experiment.
Figure 12 shows V¥ (t), (a), along with the applied feed-
back, (b), which is scaled as a fraction of the drive wave
amplitude. From the graph, one sees that no modula-
tion is applied for the higher peaks. After a period with
no applied feedback, the following kick remains relatively
small and often smaller than those applied for several pe-
riods. This indicates that though the two systems were
occasionally drifting apart, they were in a stable region of
the attractor. It is possible for synchronization to occur
by simply applying the feedback at intervals on the order
of the inverse of the Lyapunov exponent since it takes a
finite time for the trajectories to diverge. However if this
were the case the applied feedback after a nonmodulating
period would be large since it is directly proportional to
the difference in the two orbits.

By adjusting the threshold level of the comparator,
the process could be implemented for any voltage level
of VM(t). Synchronization, as expected, occurs when
the cutoff threshold is any value above 48 mV. Synchro-
nization persisted when the cutoff level is reduced to 43
mV. At this level feedback is applied on only 52% of the
peaks. Below this level, the feedback is not sufficient to
maintain a viable synchronization.
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FIG. 12. Synchronization can be obtained when feedback is
applied only when necessary. (a) A time series of the chaotic
signal VM (t). (b) The synchronizing feedback, dp. In this
case, it is applied only if VM(t,) < 43 mV.

VII. DISCUSSION AND SUMMARY

In this paper we experimentally implemented the syn-
chronization by control scheme of Lai and Grebogi [8] in
a pair of nearly identical chaotic diode resonators. This
method locally minimizes the rate of divergence of the
two chaotic trajectories upon the crossing of a suitably
defined surface of section. As a result, the average global
rate of divergence of the chaotic trajectories, as the or-
bits wander through the attractor, is minimized, and syn-

" chronization is ensured. These local and global rates of

divergence are, respectively, measured by the conditional
local (CLLM) and global Lyapunov multipliers for the
Poincaré map defined for the system. From a numeri-
cal model and from experimental data we calculated the
perturbations necessary to achieve synchronization and
explore their effect on the largest conditional Lyapunov
multipliers.

In the above method, an iterative dependent propor-
tionality factor a, multiplied the chaotic signal differ-
ence between the master and slave diode resonators at
the peaks of the driving voltage in order to form the per-
turbation necessary to induce synchronization. We were
able to calculate o, from both experimentally and nu-
merically obtained first return maps, which for the case
of the diode resonator, are nearly one dimensional. Syn-
chronization was achieved by modulating the drive wave
of the slave resonator for a fraction of the period. How-
ever, in contrast to our initial expectations, when feed-
back was applied for more than 85% of the period, the
drive wave was overmodulated and synchronization was
lost.

A modification of the above method in which the iter-
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ative dependent factor «,, is approximated by a constant
a across the whole attractor was explored by the authors
in [9]. In this paper we demonstrated that for a certain
range of values the effect of a constant « is to locally alter
the unperturbed local Lyapunov multipliers for the sys-
tem so that the conditional global Lyapunov multiplier is
reduced to a value below unity, thus ensuring global syn-
chronization. For the diode resonator system there are
regions of the attractor in which nearby orbits are nat-
urally attracting (magnitude of CLLM < 1) and regions
for which the orbits are naturally repelling (magnitude of
CLLM > 1). We experimentally demonstrated that syn-
chronization can be achieved by applying perturbations
exclusively in the latter region. This represents a very
economical approach to synchronization.

The method of synchronization by control discussed in
this paper offers an approach to chaotic synchronization
that is directly based on concepts successfully employed
to control unstable periodic orbits. Its main advantage is
that it gives a well defined prescription for obtaining the
proportionality factor a, involved in the perturbation
formula. The information required to compute a, can
be derived experimentally from the unperturbed system.
The method of synchronization by control is another tool
in the workbox of schemes that can be brought to bear
on problems involving synchronization.

Since the method of synchronization by control was
developed for systems with one positive Lyapunov ex-
ponent, a future problem to consider is its extension to
more complex dynamical systems. As discussed at the
end of Sec. II, the local minimization of the CLLM at
each iterate of the Poincaré map is not sufficient to in-
duce synchronization when more than one positive Lya-
punov exponent exists. For such systems, synchroniza-
tion cannot be achieved through a scalar feedback signal.
Even for systems with one positive Lyapunov exponent,
the method may be difficult to implement if the dynam-
ical system has a phase space of dimension larger than
3 (or 2 for maps). The reasons stem from the method’s
utilization of the unstable contravariant eigendirection
fun) at each iterate of the Poincaré map. To compute
fu(n) one needs a representation of all the stable and un-
stable eigendirections at each iterate. This, in general,
can be difficult to find if the Poincaré map has dimen-
sion greater than 2 [29]. Nonetheless, if some method
can be employed to estimate f,) by other means, the
synchronization by control scheme will yield an explicit
perturbation formula capable of inducing synchroniza-
tion between chaotic trajectories.
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FIG. 13. The diode resonator and a model of the diode.
The diode is represented by a nonlinear resistance in parallel
with nonlinear space-charge and diffusion capacitances.

APPENDIX

The diode can be modeled as a nonlinear resistor in
parallel with nonlinear capacitors (see Fig. 13). The non-
linear resistance of the diode describes the well known
current-voltage characteristics given by the Shockley
equation, Iy = I,[exp(eV/nkT) — 1], where I, is the re-
verse bias saturation current, e/kT is the thermal volt-
age, and n is an emission coefficient implemented to take
into account carrier recombination in the depletion zone.

The capacitance terms are modeled from a consider-
ation of the applied ac signal. Charge carrier recombi-
nation near the p-n junction creates a depletion region
populated primarily by immobile charges. On applica-
tion of a bias voltage injected charge moves into or out of
the depletion region altering its width. This variance in-
duces a nonlinear depletion (or space-charge) capacitance
which can be thought of as a parallel plate capacitance
with a voltage dependent width. While the diode is re-
versed biased, this term is given by Cy = C,,/(1-V/V;)™,
where V; is the junction potential, Cj is the zero voltage
bias capacitance, and m, the grading coefficient, refers
to the variation of the doping concentration across the p-
n junction. Since this term would become infinite when
V = Vj, it is used whenever V < V;/2. A forward
bias modification of the capacitance applied whenever
V > V;/2is C, = Cy (by + mV/V;) /b where b; and b,
are parameters to ensure continuity of the capacitance,
b; = (1 —m)/2 and by = (1/2)(*+™), The latter formula
is derived from a curve fit to experimental data and is
valid as long as the forward applied voltage is not exces-
sively high [23].

In addition to the space-charge capacitance, a second
capacitive effect arises when the finite response time of
the mobile charges to the changing field is considered.
The variance of this charge with respect to the voltage
defines this capacitance: Cq = Co exp(eV/nkT).

With the transformations Z = IwL/V;, V = V/Vy,
Vo =WW/Vs, B=wL/R, a = eV;/(nkT), v = BI, R/V},
¢1 = RBwCy, ¢z = Cp/Cy, and 7 = wt, the governing
differential equations are transformed into the dynamical
equations given in Eq. (3.1). The parameters for the
1N4004 diode are V; = 0.34 V, I, = 5.86 x 1076 A,
n = 1.7, Cp = 52.1 pF, m = 0.38, and Cy, = 668 pF.
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